N皇后问题

github 51题 问题描述

题目描述
题目描述

使用回溯算法

参考了labuladong大佬的算法框架

框架链接

##具体代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
class Solution {

List<List<String>> res = new ArrayList<>();

/* 输入棋盘的边长n,返回所有合法的放置 */
public List<List<String>> solveNQueens(int n) {
// "." 表示空,"Q"表示皇后,初始化棋盘
char[][] board = new char[n][n];
for (char[] c : board) {
Arrays.fill(c, '.');
}
backtrack(board, 0);
return res;
}

public void backtrack(char[][] board, int row) {
// 每一行都成功放置了皇后,记录结果
if (row == board.length) {
res.add(charToList(board));
return;
}

int n = board[row].length;
// 在当前行的每一列都可能放置皇后
for (int col = 0; col < n; col++) {
// 排除可以相互攻击的格子
if (!isValid(board, row, col)) {
continue;
}
// 做选择
board[row][col] = 'Q';
// 进入下一行放皇后
backtrack(board, row + 1);
// 撤销选择
board[row][col] = '.';
}
}

/* 判断是否可以在 board[row][col] 放置皇后 */
public boolean isValid(char[][] board, int row, int col) {
int n = board.length;
// 检查列是否有皇后冲突
for (int i = 0; i < n; i++) {
if (board[i][col] == 'Q') {
return false;
}
}

// 检查右上方是否有皇后冲突
for (int i = row - 1, j = col + 1; i >=0 && j < n; i--, j++) {
if (board[i][j] == 'Q') {
return false;
}
}

// 检查左上方是否有皇后冲突
for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--) {
if (board[i][j] == 'Q') {
return false;
}
}
return true;
}

public List charToList(char[][] board) {
List<String> list = new ArrayList<>();

for (char[] c : board) {
list.add(String.copyValueOf(c));
}
return list;
}
}